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Knowledge-based recommendation

4.1 Introduction

Most commercial recommender systems in practice are based on collaborative
filtering (CF) techniques, as described in Chapter 2. CF systems rely solely
on the user ratings (and sometimes on demographic information) as the only
knowledge sources for generating item proposals for their users. Thus, no
additional knowledge — such as information about the available movies and
their characteristics — has to be entered and maintained in the system.

Content-based recommendation techniques, as described in Chapter 3, use
different knowledge sources to make predictions whether a user will like an
item. The major knowledge sources exploited by content-based systems in-
clude category and genre information, as well as keywords that can often be
automatically extracted from textual item descriptions. Similar to CF, a major
advantage of content-based recommendation methods is the comparably low
cost for knowledge acquisition and maintenance.

Both collaborative and content-based recommender algorithms have their
advantages and strengths. However, there are many situations for which these
approaches are not the best choice. Typically, we do not buy a house, a car, or a
computer very frequently. In such a scenario, a pure CF system will not perform
well because of the low number of available ratings (Burke 2000). Furthermore,
time spans play an important role. For example, five-year-old ratings for com-
puters might be rather inappropriate for content-based recommendation. The
same is true for items such as cars or houses, as user preferences evolve over
time because of, for example, changes in lifestyles or family situations. Finally,
in more complex product domains such as cars, customers often want to define
their requirements explicitly — for example, “the maximum price of the car is x
and the color should be black”. The formulation of such requirements is not
typical for pure collaborative and content-based recommendation frameworks.
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Knowledge-based recommender systems help us tackle the aforementioned
challenges. The advantage of these systems is that no ramp-up problems exist,
because no rating data are needed for the calculation of recommendations. Rec-
ommendations are calculated independently of individual user ratings: either
in the form of similarities between customer requirements and items or on
the basis of explicit recommendation rules. Traditional interpretations of what
a recommender system is focus on the information filtering aspect (Konstan
et al. 1997, Pazzani 1999a), in which items that are likely to be of interest for
a certain customer are filtered out. In contrast, the recommendation process
of knowledge-based recommender applications is highly interactive, a foun-
dational property that is a reason for their characterization as conversational
systems (Burke 2000). This interactivity aspect triggered a slight shift from the
interpretation as a filtering system toward a wider interpretation where recom-
menders are defined as systems that “guide a user in a personalized way to
interesting or useful objects in a large space of possible options or that produce
such objects as output” (Burke 2000). Recommenders that rely on knowledge
sources not exploited by collaborative and content-based approaches are by de-
fault defined as knowledge-based recommenders by Burke (2000) and Felfernig

and Burke (2008).
Two basic types of knowledge-based recommender systems are constraint-

based (Felfernig and Burke 2008, Felfernig et al. 2006—-07, Zanker et al. 2010)
and case-based systems (Bridge et al. 2005, Burke 2000). Both approaches
are similar in terms of the recommendation process: the user must specify the
requirements, and the system tries to identify a solution. If no solution can be
found, the user must change the requirements. The system may also provide
explanations for the recommended items. These recommenders, however, differ
in the way they use the provided knowledge: case-based recommenders focus
on the retrieval of similar items on the basis of different types of similarity mea-
sures, whereas constraint-based recommenders rely on an explicitly defined set
of recommendation rules. In constraint-based systems, the set of recommended
items is determined by, for instance, searching for a set of items that fulfill the
recommendation rules. Case-based systems, on the other hand, use similarity
metrics to retrieve items that are similar (within a predefined threshold) to the
specified customer requirements. Constraint-based and case-based knowledge
representations will be discussed in the following subsections.

4.2 Knowledge representation and reasoning

In general, knowledge-based systems rely on detailed knowledge about item
characteristics. A snapshot of such an item catalog is shown in Table 4.1 for
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Table 4.1. Example product assortment: digital cameras (Felfernig et al.
2009).

id price(€) mpix opt-zoom LCD-size movies sound  waterproof

D1 148 8.0 4x 2.5 no no yes
D2 182 8.0 5% 2.7 yes yes no
D3 189 8.0 10x 2.5 yes yes no
D4 196 10.0 12x 2.7 yes no yes
Ds 151 7.1 3x 3.0 yes yes no
Ds 199 9.0 3x 3.0 yes yes no
D7 259 10.0 3x 3.0 yes yes no
Ds 278 9.1 10x 3.0 yes yes yes

the digital camera domain. Roughly speaking, the recommendation problem
consists of selecting items from this catalog that match the user’s needs, pref-
erences, or hard requirements. The user’s requirements can, for instance, be
expressed in terms of desired values or value ranges for an item feature, such
as “the price should be lower than 300€” or in terms of desired functionality,
such as “the camera should be suited for sports photography”.

Following the categorization from the previous section, we now discuss
how the required domain knowledge is encoded in typical knowledge-based
recommender systems. A constraint-based recommendation problem can, in
general, be represented as a constraint satisfaction problem (Felfernig and
Burke 2008, Zanker et al. 2010) that can be solved by a constraint solver or in
the form of a conjunctive query (Jannach 2006a) that is executed and solved
by a database engine. Case-based recommendation systems mostly exploit
similarity metrics for the retrieval of items from a catalog.

4.2.1 Constraints

A classical constraint satisfaction problem (CSP)' can be described by a-tuple
(V, D, C) where

* J/is a set of variables,

* D is a set of finite domains for these variables, and

* (isasetof constraints that describes the combinations of values the variables
can simultaneously take (Tsang 1993).

A solution to a CSP corresponds to an assignment of a value to each variable
in V in a way that all constraints are satisfied.

1" A discussion of different CSP algorithms can be found in Tsang (1993).
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Table 4.2. Example recommendation task (V¢, Verop, Cr, Cr, Cprop,
REQ) and the corresponding recommendation result (RES).

Ve {max-price(0 . ..1000), usage(digital, small-print, large-print),
photography (sports, landscape, portrait, macro)}

Verop  {price(0...1000), mpix(3.0...12.0), opt-zoom(4x . .. 12x), lcd-size
(2.5...3.0), movies(yes, no), sound(yes, no), waterproof (yes, no) }

Cr {usage = large-print — mpix > 5.0} (usage is a customer property and
mpix is a product property)

Cg {usage = large-print — max-price > 200} (usage and max-price are
customer properties)

Cprop  {(id=pl A price=148 A mpix=8.0 A opt-zoom=4x A lcd-size=2.5 N
movies=no N sound=no N waterproof=no) V - - -V (id=p8 A
price=278 A mpix=9.1 A opt-zoom=10x A lcd-size=3.0 A movies=yes
A sound=yes N waterproof =yes)}

REQ {max-price = 300, usage = large-print, photography = sports}

RES {max-price = 300, usage = large-print, photography = sports, id = p8,
price=278, mpix=9.1, opt-zoom=10x, lcd-size=3.0, movies=yes,
sound=yes, waterproof =yes}

Constraint-based recommender systems (Felfernig and Burke 2008, Felfer-
nig et al. 200607, Zanker et al. 2010) can build on this formalism and exploit
a recommender knowledge base that typically includes two different sets of
variables (V = V¢ U Vprop), one describing potential customer requirements
and the other describing product properties. Three different sets of constraints
(C = Cg U CF U Cprop) define which items should be recommended to a cus-
tomer in which situation. Examples for such variables and constraints for a
digital camera recommender, as described by Jannach (2004), and Felfernig
et al. (2006-07), are shown in Table 4.2.

* Customer properties (V) describe the possible customer requirements (see
Table 4.2). The customer property max-price denotes the maximum price
acceptable for the customer, the property usage denotes the planned usage of
photos (print versus digital organization), and photography denotes the pre-
dominant type of photos to be taken; categories are, for example, sports or
portrait photos.

* Product properties (Vprop) describe the properties of products in an assort-
ment (see Table 4.2); for example, mpix denotes possible resolutions of a
digital camera.
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* Compatibility constraints (Cg) define allowed instantiations of customer
properties — for example, if large-size photoprints are required, the maximal
accepted price must be higher than 200 (see Table 4.2).

¢ Filter conditions (C ) define under which conditions which products should
be selected — in other words, filter conditions define the relationships be-
tween customer properties and product properties. An example filter condi-
tion is large-size photoprints require resolutions greater than 5 mpix (see
Table 4.2).

* Product constraints (Cprop) define the currently available product assort-
ment. An example constraint defining such a product assortment is depicted
in Table 4.2. Each conjunction in this constraint completely defines a product
(item) — all product properties have a defined value.

The task of identifying a set of products matching a customer’s wishes and
needs is denoted as a recommendation task. The customer requirements REQ
can be encoded as unary constraints over the variables in V¢ and Vpgop — for
example, max-price = 300.

Formally, each solution to the CSP (V = V¢ U Vpgrop, D, C = Cg UCpr U
Cprop U REQ) corresponds to a consistent recommendation. In many practi-
cal settings, the variables in V¢ do not have to be instantiated, as the relevant
variables are already bound to values through the constraints in REQ. The task
of finding such valid instantiations for a given constraint problem can be ac-
complished by every standard constraint solver. A consistent recommendation
RES for our example recommendation task is depicted in Table 4.2.

Conjunctive queries. A slightly different way of constraint-based item re-
trieval for a given catalog, as shown in Table 4.1, is to view the item selection
problem as a data filtering task. The main task in such an approach, therefore, is
not to find valid variable instantiations for a CSP but rather to construct a con-
junctive database query that is executed against the item catalog. A conjunctive
query is a database query with a set of selection criteria that are connected
conjunctively.

For example, Opumpiv>10,price<300]() is such a conjunctive query on the
database table P, where o represents the selection operator and [mpix >
10, price < 300] the corresponding selection criteria. If we exploit conjunc-
tive queries (database queries) for item selection purposes, Vprop and Cprop
are represented by a database table P. Table attributes represent the elements of
Vprop and the table entries represent the constraint(s) in Cpgop. In our working
example, the set of available items is P = {py, p2, p3, P4, Ps, Pé> P17, Ps} (see
Table 4.1).
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Queries can be defined that select different item subsets from P depending
on the requirements in REQ. Such queries are directly derived from the filter
conditions (C ) that define the relationship between customer requirements and
the corresponding item properties. For example, the filter condition usage =
large-print — mpix > 5.0 denotes the fact that if customers want to have large
photoprints, the resolution of the corresponding camera (mpix) must be > 5.0. If
a customer defines the requirement usage = large-print, the corresponding filter
condition is active, and the consequent part of the condition will be integrated
in a corresponding conjunctive query. The existence of a recommendation
for a given set REQ and a product assortment P is checked by querying P
with the derived conditions (consequents of filter conditions). Such queries are
defined in terms of selections on P formulated as Ofcireria)(P), for example,

Olmpix=10/(P) = {p4, p7}.”

4.2.2 Cases and similarities

In case-based recommendation approaches, items are retrieved using similarity
measures that describe to which extent item properties match some given user’s
requirements. The so-called distance similarity (McSherry 2003a) of an item
p to the requirements r € REQ is often defined as shown in Formula 4.1.
In this context, sim(p, r) expresses for each item attribute value ¢,(p) its
distance to the customer requirement r € REQ — for example, ¢,,pix(p1) = 8.0.
Furthermore, w, is the importance weight for requirement r.’

> rerpo Wr ¥ sim(p, 1)
ZreREQ Wy

In real-world scenarios, there are properties a customer would like to maxi-

similarity(p, REQ) =

4.1

mize — for example, the resolution of a digital camera. There are also properties
that customers want to minimize — for example, the price of a digital camera or
the risk level of a financial service. In the first case we are talking about “more-
is-better” (MIB) properties; in the second case the corresponding properties are
denoted with “less-is-better” (LIB).

To take those basic properties into account in our similarity calcula-
tions, we introduce the following formulae for calculating local similarities

2 For reasons of simplicity in the following sections we assume V¢ = Vppop — that is, customer
requirements are directly defined on the technical product properties. Queries on a product table
P will be then written as oprp(P).

3 A detailed overview of different types of similarity measures can be found in Wilson and Martinez
1997. Basic approaches to determine the importance of requirements (w) are discussed in
Section 4.3.4.
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(McSherry 2003a). First, in the case of MIB properties, the local similarity
between p and r is calculated as follows:
sim(p,r) = —¢r(17) — mzr.z(r) 4.2)
max(r) — min(r)
The local similarity between p and r in the case of LIB properties is calcu-
lated as follows:

sim(p, r) = 1) = ¢:(2) (4.3)
max(r) — min(r)

Finally, there are situations in which the similarity should be based solely on
the distance to the originally defined requirements. For example, if the user has
a certain run time of a financial service in mind or requires a certain monitor
size, the shortest run time as well as the largest monitor will not represent an
optimal solution. For such cases we have to introduce a third type of local

similarity function:

¢-(p) — 7l

B max(r) — min(r)

sim(p,r) =1 (4.4)

The similarity measures discussed in this section are often the basis for dif-
ferent case-based recommendation systems, which will be discussed in detail
in Section 4.4. Utility-based recommendation — as, for instance, mentioned by
Burke (2000) — can be interpreted as a specific type of knowledge-based rec-
ommendation. However, this approach is typically applied in combination with
constraint-based recommendation (Felfernig et al. 2006-07) and sometimes
as well, in combination with case-based recommenders (Reilly et al. 2007b).
Therefore, this approach will be discussed in Section 4.3.4 as a specific func-
tionality in the context of constraint-based recommendation.

4.3 Interacting with constraint-based recommenders

The general interaction flow of a knowledge-based, conversational recom-
mender can be summarized as follows.

* The user specifies his or her initial preferences — for example, by using a
web-based form. Such forms can be identical for all users or personalized to
the specific situation of the current user. Some systems use a question/answer
preference elicitation process, in which the questions can be asked either all
at once or incrementally in a wizard-style, interactive dialog, as described
by Felfernig et al. (2006-07).
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¢ When enough information about the user’s requirements and preferences has
been collected, the user is presented with a set of matching items. Optionally,
the user can ask for an explanation as to why a certain item was recommended.

¢ The user might revise his or her requirements, for instance, to see alternative
solutions or narrow down the number of matching items.

Although this general user interaction scheme appears to be rather simple in
the first place, practical applications are typically required to implement more
elaborate interaction patterns to support the end user in the recommendation
process. Think, for instance, of situations in which none of the items in the
catalog satisfies all user requirements. In such situations, a conversational
recommender should intelligently support the end user in resolving the problem
and, for example, proactively propose some action alternatives.

In this section we analyze in detail different techniques to support users in
the interaction with constraint-based recommender applications. These tech-
niques help improve the usability of these applications and achieve higher user
acceptance in dimensions such as trust or satisfaction with the recommendation
process and the output quality (Felfernig et al. 2006—07).

4.3.1 Defaults

Proposing default values. Defaults are an important means to support cus-
tomers in the requirements specification process, especially in situations in
which they are unsure about which option to select or simply do not know
technical details (Huffman and Kahn 1998). Defaults can support customers in
choosing a reasonable alternative (an alternative that realistically fits the current
preferences). For example, if a customer is interested in printing large-format
pictures from digital images, the camera should support a resolution of more
than 5.0 megapixels (default). The negative side of the coin is that defaults
can also be abused to manipulate consumers to choose certain options. For
example, users can be stimulated to buy a park distance control functionality
in a car by presenting the corresponding default value (Herrmann et al. 2007).
Defaults can be specified in various ways:

* Static defaults: In this case, one default is specified per customer property —
for example, default(usage)=Ilarge-print, because typically users want to
generate posters from high-quality pictures.

* Dependent defaults: In this case a default is defined on different combinations
of potential customer requirements — for example, default(usage=small-
print, max-price) = 300.
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Table 4.3. Example of customer interaction data.

customer (user) price opt-zoom lcd-size
cuy 400 10x 3.0
cuy 300 10x 3.0
cus 150 4x 2.5
Clly 200 5% 2.7
clus 200 5% 2.7

* Derived defaults: When the first two default types are strictly based on a
declarative approach, this third type exploits existing interaction logs for the
automated derivation of default values.

The following example sketches the main idea and a basic scheme for derived
default values. Assume we are given the sample interaction log in Table 4.3.
The only currently known requirement of a new user should be price=400;
the task is to find a suitable default value for the customer requirement on the
optical zoom (opt-zoom). From the interaction log we see that there exists a
customer (cu;) who had similar requirements (price=400). Thus, we could
take cu;’s choice for the optical zoom as a default also for the new user.

Derived defaults can be determined based on various schemes; basic example
approaches to the determination of suitable default values are, for example,
1-nearest neighbor and weighted majority voter.

* [-Nearest neighbor: The 1-nearest neighbor approach can be used for the
prediction of values for one or a set of properties in V. The basic idea
is to determine the entry of the interaction log that is as close as possible
to the set of requirements (REQ) specified by the customer. The 1-nearest
neighbor is the entry in the example log in Table 4.3 that is most similar to the
customer requirements in REQ (see Formula 4.1). In our working example,
the nearest neighbor for the set of requirements REQ = {r| : price = 400, r; :
opt-zoom = 10x} would be the interaction log entry for customer cu. If,
for example, the variable /cd-size is not specified by the current customer,
the recommender application could propose the value 3.0.

* Weighted majority voter: The weighted majority voter proposes customer
property values that are based on the voting of a set of neighbor items for a
specific property. It operates on a set of n-nearest neighbors, which can be
calculated on the basis of Formula 4.1. Let us assume that the three-nearest
neighbors for the requirements REQ = {r; : price = 400} are the interaction
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log entries for the customers {cu, cu,, cus} and we want to determine a
default for the property opt-zoom. The majority value for opt-zoom would
then be 10, which, in this context, can be recommended as the default.

For weighted majority voters as well as for simple 1-nearest-neighbor-
based default recommendations, it is not possible to guarantee that the re-
quirements (including the defaults) allow the derivation of a recommen-
dation. For example, if REQ = {r; : opt-zoom = 3x} then the weighted
majority voter approach would recommend /cd-size = 2.7, assuming that
the three-nearest neighbors are {cus, cus, cus}; the corresponding query
Olopi-zoom=3x,lcd-size=2.7)(P) would result in the empty set ¥. The handling of
such situations will be discussed in Subsection 4.3.2.

Selecting the next question. Besides using defaults to support the user in the
requirements specification process, the interaction log and the default mecha-
nism can also be applied for identifying properties that may be interesting for
the user within the scope of a recommendation session. For example, if a user
has already specified requirements regarding the properties price and opt-zoom,
defaults could propose properties that the user could be interested to specify
next. Concepts supporting such a functionality are discussed in the following
paragraphs.

Proposing defaults for properties to be presented next is an important
functionality, as most users are not interested in specifying values for all
properties — they rather want to specify the conditions that are important for
them, but then immediately move on to see the recommended items. Different
approaches to the selection of interesting questions are discussed by Mahmood
and Ricci (2007). The precondition for such approaches is the availability of
user interaction logs (see Table 4.4). One basic approach to the determination
of defaults for the presentation of selectable customer properties is discussed
by Mahmood and Ricci (2007), in which question recommendation is based on
the principle of frequent usage (popularity). Such a popularity value can be cal-
culated using Formula 4.5, in which the recommendation of a question depends
strictly on the number of previous selections of other users — see, for exam-
ple, Table 4.4. By analyzing the interaction log of Table 4.4, popularity(price,
pos : 1) = 0.6, whereas popularity(mpix, pos : 1) = 0.4. Consequently, for the
first question, the property price would be selected.

#selections(attribute, pos)

popularity(attribute, pos) = (4.5)

#sessions

Another approach for supporting question selection is to apply weighted-
majority voters (Felfernig and Burke 2008). If, for example, a user has already
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Table 4.4. Order of selected customer properties; for example, in session 4
(ID = 4) mpix has been selected as first customer property to be specified.

ID  pos:1 pos:2 pos:3 pos:4 pos:5 pos:6
1 price opt-zoom  mpix movies LCD-size  sound
2 price opt-zoom  mpix movies LCD-size -
3 price  mpix opt-zoom  lcd-size movies sound
4 mpix  price opt-zoom  lcd-size movies -
5 mpix  price lcd-size opt-zoom  movies sound

selected the properties price and opt-zoom, the weighted majority voter would
identify the sessions with ID {1, 2} as nearest neighbors (see Table 4.4) for
the given set of requirements and then propose mpix as the next interesting
question.

4.3.2 Dealing with unsatisfiable requirements
and empty result sets

In our example, a given set of requirements REQ = {r| : price <= 150,r; :
opt-zoom = 5x, r3 : sound = yes, r4 : waterproof = yes} cannot be fulfilled
by any of the products in P = {pi, pa, p3, pa, Ps, Ps, P7, Ps} because
O [pric'e<:150,opt—zoam:Sx,sound:yes,waterpruof:yes](P) =0.

Many recommender systems are not able to propose a way out of such
a “no solution could be found” dilemma. One option to help the user out is
to incrementally and automatically relax constraints of the recommendation
problem until a corresponding solution has been found. Different approaches
to deal with this problem have been proposed in the literature. All of them share
the same basic goal of identifying relaxations to the original set of constraints
(Jannach 2006a, O’Sullivan et al. 2007, Felfernig et al. 2004, Felfernig et al.
2009). For the sake of better understandability, we assume that the user’s
requirements are directly related to item properties Vprop.

In this section we discuss one basic approach in more detail. This approach is
based on the idea of identifying and resolving requirements-immanent conflicts
induced by the set of products in P. In such situations users ask for help that can
be provided, for example, by the indication of a minimal set of requirements
that should be changed in order to find a solution. In addition to a point to such
unsatisfiable requirements, users could also be interested in repair proposals —
that is, in adaptations of the initial requirements in such a way that the recom-
mender is able to calculate a solution (Felfernig et al. 2009).



92 4 Knowledge-based recommendation

The calculation of such repairs can be based on the concepts of model-based
diagnosis (MBD; Reiter 1987) — the basis for the automated identification and
repair of minimal sets of faulty requirements (Felfernig et al. 2004). MBD
starts with a description of a system that is, in the case of recommender ap-
plications, a predefined set of products p; € P. If the actual system behavior
is in contradiction to the intended system behavior (the unintended behavior
is reflected by the fact that no solution could be found), the diagnosis task is
to identify the system components (in our context represented by the user
requirements in REQ) that, when we assume that they function abnormally,
explain the discrepancy between the actual and the intended behavior of the
system under consideration.

In the context of our problem setting, a diagnosis is a minimal set of user
requirements whose repair (adaptation) will allow the retrieval of a recom-
mendation. Given P = {py, p2,..., pn} and REQ = {ri,r, ..., ry,} where
o (reg)(P) = ¥, a knowledge-based recommender system would calculate a set
of diagnoses A = {dy, da, ..., di} where o1rep—a1(P) # ¥ Vd; € A. A diagnosis
is aminimal set of elements {ry, 7, ..., 1y} = d € REQ that have to be repaired
in order to restore consistency with the given product assortment so at least
one solution can be found: ofrpg—q41(P) # ¥. Following the basic principles of
MBD, the calculation of diagnoses d; € A is based on the determination and
resolution of conflict sets. A conflict set C'S (Junker 2004) is defined as a subset
{ri, 72, ..., 11} € REQ, such that ojc5(P) = . A conflict set CS is minimal if
and only if (iff) there does not exist a CS’ with CS’ C CS.

As mentioned, no item in P completely fulfills the requirements REQ = {r; :
price <= 150, r, : opt-zoom = 5x, r3 : sound=yes, ry . waterproof=yes}:
Olprice<=150,0pt-zoom=>5x ,sound=yes, waterproof=yes| (P) = . The corresponding con-
flict setsare CS| = {ri, 2}, CS; = {ry, rs},and CS; = {ry, r3}, as G[CSI](P) =
@, orcs2(P) =9, and ocs31(P) = . The identified conflict sets are minimal,
as —'HCSiZ CSiCCSl N U[CSI’](P) =0, —'HCSQZ CSéCCSz A O’[Cszf](P) =0,
and —'HCS§I CSéCCSy, A O[C53/](P) =0.

Diagnoses d; € A can be calculated by resolving conflicts in the given set
of requirements. Because of its minimality, one conflict can be easily resolved
by deleting one of the elements from the conflict set. After having deleted
at least one element from each of the identified conflict sets, we are able to
present a corresponding diagnosis. The diagnoses derived from the conflict
sets {C S}, CS,, CS3} in our working example are A = {d;:{ry, r2}, do:{r1, ra},
ds:{ra, r3}}. The calculation of such diagnoses (see Figure 4.1) starts with the
first identified conflict set (CS;) (1). CS; can be resolved in two alternative
ways: by deleting either r; or r,. Both of these alternatives are explored follow-
ing a breadth-first search regime. After deleting r| from REQ, the next conflict
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(1) CS4={ry, rp}

WZ T

(2) C82={r2, r4} (3) C83={r1, r3}

{”ﬁ ﬁ} {”% %{rs}

di=roral  dy={ryrg) = d3={rp,rs}

Figure 4.1. Calculating diagnoses for unsatisfiable requirements.

set is C'S, (2), which also allows two different relaxations, namely r, and 7.
Deleting the elements of C S, leads to the diagnoses d; and d,. After deleting
r, from C Sy, the next returned conflict set is C S; (3). Both alternative deletions
for CS3, in principle, lead to a diagnosis. However, the diagnosis {ry, r;} is
already contained in d;; consequently, this path is not expanded further, and
the third and final diagnosis is dj.

Calculating conflict sets. A recent and general method for the calculation
of conflict sets is QUICKXPLAIN (Algorithm 4.1), an algorithm that calculates
one conflict set at a time for a given set of constraints. Its divide-and-conquer
strategy helps to significantly accelerate the performance compared to other
approaches (for details see, e.g., Junker 2004).

QuIickXPLAIN has two input parameters: first, P is the given product as-
sortment P = {py, p2,..., pm}. Second, REQ = {ri,r2,...,r,} is a set of
requirements analyzed by the conflict detection algorithm.

QuIckXPLAIN is based on a recursive divide-and-conquer strategy that di-
vides the set of requirements into the subsets REQ; and REQ,. If both subsets
contain about 50 percent of the requirements (the splitting factor is 3), all
the requirements contained in REQ, can be deleted (ignored) after a single
consistency check if orppn(P) = @. The splitting factor of 7 is generally
recommended; however, other factors can be defined. In the best case (e.g.,
all elements of the conflict belong to subset REQ,) the algorithm requires
log,  + 2u consistency checks; in the worst case, the number of consistency
checks is 2u(log,# + 1), where u is the number of elements contained in the
conflict set.
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Algorithm 4.1 QUICKXPLAIN(P, REQ)

Input: trusted knowledge (items) P; Set of requirements REQ
Output: minimal conflict set C'S

if o1reg)(P) # ¥ or REQ = ¢ then return §

else return QX' (P, ¥, ¥, REQ);

Function QX'(P, B, A, REQ)

if A # §) and op)(P) = ¢ then return §;

if REQ = {r} then return {r};

let{ry,...,r,} = REQ;

let k be 3;

REQ, <—ry,...,rpand REQ, < Igq1, ..., 1y}
Ay < QX'(P, BUREQ,, REQ,, REQ,);

A1 < QX'(P, BU Ay, Ay, REQ));

return Ay U Ay,

To show how the algorithm QuUickXPLAIN works, we will exemplify the cal-
culation of a conflict set on the basis of our working example (see Figure 4.2) —
that is, P = {p1, p2,..., ps} and REQ = {r;:price<150, r;:opt-zoom=>5x,
r3:sound=yes, rq:waterproof=yes}. First, the main routine is activated (1),
which checks whether o(rep)(P) # ¥. As this is not the case, the recursive
routine QX' is activated (2). This call results in call (3) (to obtain A,), which
itself results in ¥, as A # ¥ and op(P) = #. To obtain A, call (4) directly
activates call (5) and call (6), and each those last calls identifies a correspond-
ing conflict element (r, and ry). Thus, CS;:{ry, r;} is returned as the first

conflict set.

(1) QX(P {ry, 1. T, 74})

%\/) {ryrp}

(2) QX'(P, {1, {0, {ry, 1, 13, 1})

/Y Lo INYn

(3) QX(P, {ry, ro}, {rq, 1o} {rs. 14}) (4) QX(P {}, {1 {ry, 12}

/\/ } {r;} \/\'.\/\ {ry}

(8) QX(P, {ry}, {ryd, {ro}) (6) QX'(P, {r}, {rah {ry})

Figure 4.2. Example: calculation of conflict sets using QUICKXPLAIN.
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Algorithm 4.2 MINRELAX(P, REQ)

Input: Product assortment P; set of requirements REQ
Output: Complete set of all minimal diagnoses A
A <~ @
forall p; € P do
PSX < product-specific-relaxation(p;, REQ);
SUB « {re A —r C PSX};
if SUB # ¢ then continue with next p;;
SUPER « {re A — PSX Cr};
if SUPER # ) then A < A — SUPER;
A <~ A U{PSX};
return A;

Besides the usage within an MBD procedure, the conflicts computed with
QuickXPLAIN can also be used in interactive relaxation scenarios as described
by McSherry (2004), in which the user is presented with one or more remaining
conflicts and asked to choose one of the conflict elements to retract. For an
example of such an algorithm, see Jannach 2006b.

Fast in-memory computation of relaxations with MINRELAX. As long as
the set of items is specified explicitly (as in Table 4.1), the calculation of
diagnoses can be achieved without the explicit determination and resolution of
conflict sets (Jannach 2006a). MINRELAX (Algorithm 4.2) is such an algorithm
to determine the complete set of diagnoses. The previously discussed approach
based on the resolution of conflict sets is still indispensable in interactive
settings, in which users should be able to manually resolve conflicts, and in
settings in which items are not enumerated but described in the form of generic
product structures (Felfernig et al. 2004).

The MINRELAX algorithm for determining the complete set of minimal
diagnoses has been introduced by Jannach (2006a). This algorithm calculates,
for each item p; € P and the requirements in REQ, a corresponding product-
specific relaxation PSX. PSX is a minimal diagnosis d € A (the set of all
minimal diagnoses) if there is no set 7 such that » C PSX. For example, the PSX
for item p; and the requirements {ry, r,, r3, r4} is the ordered set {1, 0, 0, 1},
which corresponds to the first column of Table 4.5 (only the requirements r;
and r4 are satisfied by item p;).

The performance of MINRELAX is (n * (n + 1))/2 subset checks in
the worst case, which can be conducted efficiently with in-memory bitset
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Table 4.5. Intermediate representation: item-specific relaxations PSX for
Di € P.

P D2 D3 D4 Ps Ps p7 Ds
ry @ price < 150 1 0 0 0 0 0 0 0
ry : opt-zoom = 5x 0 1 0 0 0 0 0 0
r3 @ sound = yes 0 1 1 0 1 1 1 1
r4 : waterproof = yes 1 0 0 1 0 0 0 1

operations (Jannach 2006a). Table 4.5 depicts the relationship between our ex-
ample requirements and each p; € P. Because of the explicit enumeration of all
possible items in P, we can determine for each requirement/item combination
whether the requirement is supported by the corresponding item. Each column
of Table 4.5 represents a diagnosis; our goal is to identify the diagnoses that
are minimal.

4.3.3 Proposing repairs for unsatisfiable requirements

After having identified the set of possible diagnoses (A), we must propose repair
actions for each of those diagnoses — in other words, we must identify possible
adaptations for the existing set of requirements such that the user is able to find
a solution (Felfernig et al. 2009). Alternative repair actions can be derived by
querying the product table P with 7 [auipures(a)) O [rEQ—a1(P)- This query identifies
all possible repair alternatives for a single diagnosis d € A where Tuuribures(a)]
is a projection and oreg—q1(P) is a selection of -tuples from P that satisfy
the criteria in REQ—d. Executing this query for each of the identified diagnoses
produces a complete set of possible repair alternatives. For reasons of simplicity
we restrict our example to three different repair alternatives, each belonging to
exactly one diagnosis. Table 4.6 depicts the complete set of repair alternatives
REP = {rep,, rep,, rep;} for our working example, where

Tl attributes(d1)]9 [REQ—d l](P ) = T [price,opt-zoom) O [r3:sound=yes,r4:waterproof=yes) (P ) =
{price=278, opt-zoom=10x}

77[attributes(d2)]a[REQ—d2](P) = n[price,waterpmo_f]a[r2:0pt-zoom=5)c,r3:s0und=yes](P) =
{price=182, waterproof=no}

7T[attributes(dS)]a[REQ—d3](P) = 7T[opt-zoom,sound]g[rl:price<=150.r4zwaterpmof=yes](P)
= {opt-zoom=4x, sound=no}



4.3 Interacting with constraint-based recommenders 97

Table 4.6. Repair alternatives for requirements in REQ.

repair price opt-zoom sound waterproof
rep, 278 10x 4 i
rep, 182 4 4 no
rep; Vv 4x no Vv

4.3.4 Ranking the items/utility-based recommendation

It is important to rank recommended items according to their utility for the
customer. Because of primacy effects that induce customers to preferably look
at and select items at the beginning of a list, such rankings can significantly
increase the trust in the recommender application as well as the willingness to
buy (Chen and Pu 2005, Felfernig et al. 2007)

In knowledge-based conversational recommenders, the ranking of items
can be based on the multi-attribute utility theory (MAUT), which evaluates
each item with regard to its utility for the customer. Each item is evaluated
according to a predefined set of dimensions that provide an aggregated view on
the basic item properties. For example, quality and economy are dimensions in
the domain of digital cameras; availability, risk, and profit are such dimensions
in the financial services domain. Table 4.7 exemplifies the definition of scoring
rules that define the relationship between item properties and dimensions. For
example, a digital camera with a price lower than or equal to 250 is evaluated,
with Q score of 5 regarding the dimension quality and 10 regarding the
dimension economy.

We can determine the utility of each item p in P for a specific customer
(Table 4.8). The customer-specific item utility is calculated on the basis of
Formula 4.6, in which the index j iterates over the number of predefined
dimensions (in our example, #(dimensions)=2: quality and economy), inter-
est(j) denotes a user’s interest in dimension j, and contribution(p, j) denotes
the contribution of item p to the interest dimension j. The value for contri-
bution(p, j) can be calculated by the scoring rules defined in Table 4.7 — for
example, the contribution of item p; to the dimension quality is 5+ 4 + 6+
6 +3 4 7+ 10 = 41, whereas its contribution to the dimension economy is
10 +10+9+ 10+ 10+ 10 4+ 6 = 65.

To determine the overall utility of item p; for a specific customer, we
must take into account the customer-specific interest in each of the given
dimensions — interest(j). For our example we assume the customer prefer-
ences depicted in Table 4.9. Following Formula 4.6, for customer cu;, the
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Table 4.7. Example scoring rules regarding the
dimensions quality and economy.

value quality economy

price <250 5 10
>250 10 5

mpix <8 4 10
>8 10 6

opt-zoom <9 6 9
>9 10 6

LCD-size <2.7 6 10
>2.7 9 5

movies yes 10 7
no 3 10

sound yes 10 8
no 7 10

waterproof yes 10 6
no 8 10

utility of item p, is 49%0.8 4 64*0.2 = 52.0 and the overall utility of item pg
would be 69%0.8 + 43%0.2 = 63.8. For customer cu;, item p, has the utility
49%0.4 4 64*0.6 = 58.0 and item pg has the utility 69%0.4 4+ 43*0.6 = 53.4.
Consequently, item pg has a higher utility (and the highest utility) for cu;,
whereas item p; has a higher utility (and the highest utility) for cu,. Formula
4.6 follows the principle of the similarity metrics introduced in Section 4.2:
interest(j) corresponds to the weighting of requirement r; and contribution(p,
) corresponds to the local similarity function sim(p, r) (McSherry 2003a).

Table 4.8. Item utilities for customer cu| and customer cus.

quality economy cuy cuy
p1 2.(5,4,6,6,3,7,10) = 41 >°(10,10,9,10,10,10,6) = 65 45.8 [8] 55.4[6]
p2 >.(5,4,6,6,10,10,8) = 49 >°(10,10,9,10,7,8,10) = 64  52.0[7] 58.0[1]

ps 3.(5.4,10,6,10,10,8) =53  3(10,10,6,10,7,8,10) =61  54.6[5] 57.8[2]
ps 3.(5.10,10,6,10,7,10) =58  3(10,6,6,10,7,10,6) =55  57.4[4] 562 [4]
ps 3.(5.4,6,10,10,10,8) =53  3.(10,10,9,6,7,8,10) =60  54.4[6] 57.2[3]
pe 3.(5.10,6,9,10,10,8) =58  >.(10,6,9,5,7,8,10)=55  57.4[3] 56.2[5]
pr 3.(10,10,6,9,10,10,8) =63 (5.6,9,5,7.8,10) = 50 60.4[2] 55.2[7]
ps 3.(10,10,10,9,10,10,10) = 69 (5.6,6,5,7,8,6) = 43 63.8[1] 53.4[8]
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Table 4.9. Customer-specific preferences
represent the values for interest(j) in Formula 4.6.

customer (user) quality economy
cuy 80% 20%
cuy 40% 60%

The concepts discussed here support the calculation of personalized rankings
for a given set of items. However, such utility-based approaches can be applied
in other contexts as well — for example, the calculation of utilities of specific
repair alternatives (personalized repairs; Felfernig et al. 2006) or the calculation
of utilities of explanations (Felfernig et al. 2008b).

#(dimensions)
utility(p) = Z interest(j) * contribution(p, j) (4.6)
j=1

There exist different approaches to determining a customer’s degree of
interest in a certain dimension (inferest(j) in Formula 4.6). Such preferences
can be explicitly defined by the user (user-defined preferences). Preferences
can also be predefined in the form of scoring rules (utility-based preferences)
derived by analyzing logs of previous user interactions (e.g., conjoint analysis).

These basic approaches will be exemplified in the following paragraphs.

User-defined preferences. The first and most straightforward approach is to
directly ask the customer for his or her preferences within the scope of a rec-
ommendation session. Clearly, this approach has the main disadvantage that
the overall interaction effort for the user is nearly doubled, as for many of
the customer properties the corresponding importance values must be speci-
fied. A second problem with this basic approach is that the recommender user
interface is obtrusive in the sense that customers are interrupted in their prefer-
ence construction process and are forced to explicitly specify their preferences
beforehand.

Utility-based preferences. A second possible approach to determining cus-
tomer preferences is to apply the scoring rules of Table 4.7. If we assume, for
example, that a customer has specified the requirements REQ = {r| : price <=
200, ry : mpix = 8.0, r3 : opt-zoom = 10X, r4 : lcd-size <= 2.7}, we can
directly derive the instantiations of the corresponding dimensions by ap-
plying the scoring rules in Table 4.7. In our case, the dimension quality
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Table 4.10. Ranking of price/mpix stimuli: price,[100—159],
price,[160—199), price;[200-300], mpix,[5.0-8.0], and
mpix,[8.1-11.0].

price, price, price, avg(mpix,)
mpix, 4 5 6 5
mpix, 2 1 3 2
avg(price,) 3 3 4.5 3.5

would be 54+4+4+ 10+ 6 =25 and the dimension economy would be
10 4+ 10 + 6 4+ 10 = 36. This would result in a relative importance for quality

with a value of % = 0.41 and a relative importance for economy with the
value 253% =0.59.

Conjoint analysis. The following simple example should characterize the
basic principle of conjoint analysis (Belanger 2005). In this example, a user (test
person) is confronted with different price/mpix value combinations (stimuli).
The user’s task is to rank those combinations; for example, the combination
mpix,[8.1-11.0] / price,[160—199] gets the highest ranking (see Tables 4.10
and 4.11). The average values for the columns inform us about the average
ranking for the corresponding price interval (avg(price,)). The average values
for the rows inform us about the average rankings for the corresponding mpix
interval avg(mpix, ). The average value over all rankings is avg(ranking) = 3.5.

The information we can extract from Tables 4.10 and 4.11 is the
deviation from the average ranking for specific property values — for

Table 4.11. Effects of customer property changes on
overall utility: changes in mpix have a higher impact
on the overall utility than changes in price.

avg(ranking) — avg(mpix,)

avg(ranking) — avg(mpix,) -15
avg(ranking) — avg(mpix,) 1.5
avg(ranking) — avg(price,) 0.5
avg(ranking) — avg(price,) 0.5

avg(ranking) — avg(price;) —1.0
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example, avg(price,) from avg(ranking): avg(ranking) — avg(price;) = 0.5,
avg(ranking) — avg(price,) = 0.5, avg(ranking) — avg(price;) = —1. Further-
more, avg(ranking) — avg(mpix,) = —1.5 and avg(ranking) — avg(mpix,) =
1.5. The avg(price, ) spanis 1.5 (—1 ... 0.5) whereas the span for avg(mpix,)
is 3.0 (—1.5 ... 1.5). Following the ideas of conjoint analysis (Belanger 2005)
we are able to conclude that price changes have a lower effect on the overall
utility (for this customer) than changes in terms of megapixels. This result is
consistent with the idea behind the ranking in our example (Tables 4.10 and
4.11), as the highest ranking was given to the combination price,/mpix,, where
a higher price was accepted in order to ensure high quality of technical features
(here: mpix). Consequently, we can assign a higher importance to the technical
property mpix compared with the property price.

In this section we provided an overview of concepts that typically support
users in the interaction with a constraint-based recommender application. Di-
agnosis and repair concepts support users in situations in which no solution
could be found. Defaults provide support in the requirements specification
process by proposing reasonable alternatives — a negative connotation is that
defaults can be abused to manipulate users. Utility-based ranking mechanisms
support the ordering of information units such as items on a result page, repair
alternatives provided by a diagnosis and repair component, and the ranking
of explanations for recommended items. These concepts form a toolset use-
ful for the implementation of constraint-based recommender applications. A
commercial application built on the basis of those concepts is presented in
Section 4.5.

4.4 Interacting with case-based recommenders

Similar to constraint-based recommenders, earlier versions of case-based rec-
ommenders followed a pure guery-based approach, in which users had to
specify (and often respecify) their requirements until a target item (an item
that fits the user’s wishes and needs) has been identified (Burke 2002a). Espe-
cially for nonexperts in the product domain, this type of requirement elicitation
process can lead to tedious recommendation sessions, as the interdependent
properties of items require a substantial domain knowledge to perform well
(Burke 2002a). This drawback of pure query-based approaches motivated the
development of browsing-based approaches to item retrieval, in which users —
maybe not knowing what they are seeking — are navigating in the item space
with the goal to find useful alternatives. Critiquing is an effective way to



102 4 Knowledge-based recommendation

entry item
(recommended item)

Y

AY
AN N more o

A

\“‘expi:sive o
] less 1 ® ®
prlce mpix v . .
<- i more
PN e mpix
’ | ‘ most similar item
[ ve

cheaper

N\
7
mpix
Figure 4.3. Critique-based navigation: items recommended to the user can be
critiqued regarding different item properties (e.g., price or mpix).

support such navigations and, in the meantime, it is one of the key concepts
of case-based recommendation; this concept will be discussed in detail in the
following subsections.

4.4.1 Critiquing

The idea of critiquing (Burke 2000, Burke et al. 1997) is that users specify their
change requests in the form of goals that are not satisfied by the item currently
under consideration (entry item or recommended item). If, for example, the
price of the currently displayed digital camera is too high, a critique cheaper
can be activated; if the user wants to have a camera with a higher resolution
(mpix), a corresponding critique more mpix can be selected (see Figure 4.3).

Further examples for critiques are “the hotel location should be nearer to
the sea” or “the apartment should be more modern-looking”. Thus, critiques
can be specified on the level of technical properties as well as on the level of
abstract dimensions.

State-of-the-art case-based recommenders are integrating query-based with
browsing-based item retrieval (Burke 2002a). On one hand, critiquing supports
an effective navigation in the item space; on the other hand, similarity-based
case retrieval supports the identification of the most similar items —that is, items
similar to those currently under consideration. Critiquing-based recommender
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Algorithm 4.3 SIMPLECRITIQUING(q, CI)

Input: Initial user query ¢; Candidate items C/
procedure SIMPLECRITIQUING(¢q, C1)
repeat
r < ITEMRECOMMEND(q, C1);
q < USERREVIEW(r, CI);
until empty(q)
end procedure

procedure ITEMRECOMMEND(g, C1)
C1 < {ci € CI: satisfies(ci, q)};
r < mostsimilar(C1, q);
return r;

end procedure

procedure USERREVIEW(r, CT)
q < critique(r);
Cl < CI—r;
return g;

end procedure

systems allow users to easily articulate preferences without being forced to
specify concrete values for item properties (see the previous example). The
goal of critiquing is to achieve time savings in the item selection process and,
at the same time, achieve at least the same recommendation quality as standard
query-based approaches. The major steps of a critiquing-based recommender
application are the following (see Algorithm 4.3, SIMPLECRITIQUING).

Item recommendation. The inputs for the algorithm SIMPLECRITIQUING” are
an initial user query q, which specifies an initial set of requirements, and a set of
candidate items C1 that initially consists of all the available items (the product
assortment). The algorithm first activates the procedure ITEMRECOMMEND,
which is responsible for selecting an item r to be presented to the user. We
denote the item that is displayed in the first critiquing cycle as entry item and all
other items displayed thereafter as recommended items. In the first critiquing

4 The notation used in the algorithm is geared to Reilly et al. (2005a).
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Figure 4.4. Critique-based navigation: remaining candidate items (items with
bright background) after a critique on the entry item property price.

cycle, the retrieval of such items is based on a user query ¢ that represents a
set of initial requirements. Entry items are typically determined by calculating
the similarity between the requirements and the candidate items. After the first
critiquing cycle has been completed, recommended items are determined by
the procedure ITEMRECOMMEND on the basis of the similarity between the
currently recommended item and those items that fulfill the criteria of the
critique specified by the user.

Item reviewing. The user reviews the recommended (entry) item and either
accepts the recommendation or selects another critique, which triggers a new
critiquing cycle (procedure USERREVIEW). If a critique has been triggered, only
the items (the candidate items) that fulfill the criteria defined in the critique
are further taken into account — this reduction of CI is done in procedure
ITEMRECOMMEND. For example, if a user activates the critique cheaper, and
the price of the recommended (entry) camera is 300, the recommender excludes
cameras with a price greater than or equal to 300 in the following critiquing
cycle.

4.4.2 Compound critiquing

In our examples so far we primarily considered the concept of unit critiques;
such critiques allow the definition of change requests that are related to a single
item property. Unit critiques have a limited capability to effectively narrow
down the search space. For example, the unit critique on price in Figure 4.4
eliminates only about half the items.
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Figure 4.5. Critique-based navigation: remaining candidate items (items with
bright background) after a compound critique on price and mpix.

Allowing the specification of critiques that operate over multiple proper-
ties can significantly improve the efficiency of recommendation dialogs, for
example, in terms of a reduced number of critiquing cycles. Such critiques
are denoted as compound critiques. The effect of compound critiques on the
number of eliminated items (items not fulfilling the criteria of the critique) is
shown in Figure 4.5. The compound critique cheaper and more mpix defines
additional goals on two properties that should be fulfilled by the next proposed
recommendation.

An important advantage of compound critiques is that they allow a faster
progression through the item space. However, compound critiques still have
disadvantages as long as they are formulated statically, as all critique alter-
natives are available for every item displayed. For example, in the context of
a high-end computer with the fastest CPU available on the market and the
maximum available storage capacity, a corresponding critique faster CPU and
more storage capacity (or more efficient) would be still proposed by a static
compound critiquing approach. In the following subsection we will present the
dynamic critiquing approach that helps to solve this problem.

4.4.3 Dynamic critiquing

Dynamic critiquing exploits patterns, which are generic descriptions of dif-
ferences between the recommended (entry) item and the candidate items —
these patterns are used for the derivation of compound critiques. Critiques are
denoted as dynamic because they are derived on the fly in each critiquing
cycle. Dynamic critiques (Reilly et al. 2007b) are calculated using the concept
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Algorithm 4.4 DYNAMICCRITIQUING(g, C1)

Input: Initial user query ¢; Candidate items C/;
number of compound critiques per cycle k;
minimum support for identified association rules o,,;,
procedure DyNAMICCRITIQUING(q, C1, k, i)
repeat
r < ITEMRECOMMEND(g, C1);
CC <« CoMPOUNDCRITIQUES(7, C1, k, 0yin);
q < USerRREVIEW(r, CI, CC);
until empty(q)
end procedure

procedure ITEMRECOMMEND(g, C1)
C1 <« {ci € CI: satisfies(ci, q)};
r < mostsimilar(C1, q);
return r;

end procedure

procedure USERREVIEW(r, CI, CC)
q < critique(r, CC);
Cl < CI—r;
return g;

end procedure

procedure CoMPOUNDCRITIQUES(r, C1, k, Oyin)
C P < CRITIQUEPATTERNS(r, CI);
CC < APRIORI(C P, 0,n);
SC <« SELECTCRITIQUES(CC, k);
return SC;
end procedure

of association rule mining (Agrawal and Srikant 1994). Such a rule can be,
for example, “42.9% of the remaining digital cameras have a higher zoom
and a lower price”. The critique that corresponds to this property combination
is “more zoom and lower price”. A dynamic critiquing cycle consists of the
following basic steps (see Algorithm 4.4, DYNAMICCRITIQUING").

5 The algorithm has been developed by Reilly et al. (2005a).
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The inputs for the algorithm are an initial user query g, which specifies the
initial set of requirements, a set of candidate items C/ that initially consists
of all the available items, k as the maximum number of compound critiques to
be shown to the user in one critiquing cycle, and o,,;, as the minimum support
value for calculated association rules.

Item recommendation. Similar to the SIMPLECRITIQUING algorithm dis-
cussed in Section 4.4.1, the DYNAMICCRITIQUING algorithm first activates the
procedure ITEMRECOMMEND, which is responsible for returning one recom-
mended item r (respectively, entry item in the first critiquing cycle). On the
basis of this item, the algorithm starts the calculation of compound critiques
cc; € CC by activating the procedure CoMPOUNDCRITIQUES, which itself ac-
tivates the procedures CRITIQUEPATTERNS (identification of critique patterns),
APRIORI (mining compound critiques from critique patterns), and SELECTCRI-
TIQUES (ranking compound critiques). These functionalities will be discussed
and exemplified in the following paragraphs. The identified compound critiques
in CC are then shown to the user in USERREVIEW. If the user selects a critique —
which could be a unit critique on a specific item property as well as a compound
critique — this forms the criterion of the new user query ¢. If the resulting query
q is empty, the critiquing cycle can be stopped.

Identification of critique patterns. Critique patterns are a generic represen-
tation of the differences between the currently recommended item (entry item)
and the candidate items. Table 4.12 depicts a simple example for the derivation
of critique patterns, where item eig is assumed to be the entry item and the items
{ciy, ..., ci7} are the candidate items. On the basis of this example, critique
patterns can be easily generated by comparing the properties of item eig with
the properties of {ciy, ..., ci7}. For example, compared with item eig, item ci;
is cheaper, has less mpix, a lower opt-zoom, a smaller lcd-size, and does not
have a movie functionality. The corresponding critique pattern for item ci; is
(<, <, <, <, #). A complete set of critiquing patterns in our example setting
is shown in Table 4.12. These patterns are the result of calculating the type of
difference for each combination of recommended (entry) and candidate item.
In the algorithm DYNAMICCRITIQUING, critique patterns are determined on the
basis of the procedure CRITIQUINGPATTERNS.

Mining compound critiques from critique patterns. The next step is to iden-
tify compound critiques that frequently co-occur in the set of critique patterns.
This approach is based on the assumption that critiques correspond to feature
combinations of interest to the user — that is, a user would like to adapt the
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Table 4.12. Critique patterns (C P) are generated by analyzing the differences
between the recommended item (the entry item, E 1) and the candidate items

(C1). In this example, item eis is assumed to be the entry item, {ciy, ..., ci7}
are assumed to be the candidate items, and {cp1, ..., cp7} are the critique
patterns.

id price  mpix opt-zoom LCD-size  movies

entry item (ET) eig 278 9.1 9% 3.0 yes
ciy 148 8.0 4x 2.5 no
cip 182 8.0 S5x 2.7 yes
ci3 189 8.0 10x 2.5 yes
candidate items (C1) ciy 196 10.0 12x 2.7 yes
cis 151 7.1 3x 3.0 yes
cig 199 9.0 3x 3.0 yes
ciy 259 10.0 10x 3.0 yes
cpy < < < < *
cpa < < < < =
cps3 < < > < =
critique patterns (CP)  c¢ps < > > < =
cps < < < = =
CPe < < < = =
cp7 < > > = =

requirements in exactly the proposed combination (Reilly et al. 2007b). For
critique calculation, Reilly et al. (2007b) propose applying the APRIORI algo-
rithm (Agrawal and Srikant 1994). The output of this algorithm is a set of
association rules p = g, which describe relationships between elements in the
set of critique patterns. An example i >_y0, = <price, Which can be derived
from the critique patterns of Table 4.12. This rule denotes the fact that given
>_00m s part of a critique pattern, <, is contained in the same critique pat-
tern. Examples for association rules and the corresponding compound critiques
that can be derived from the critique patterns in Table 4.12 are depicted in
Table 4.13.

Each association rule is additionally characterized by support and confidence
values. Support (SUPP) denotes the number of critique patterns that include all
the elements of the antecedent and consequent of the association rule (expressed
in terms of the percentage of the number of critique patterns). For example,
the support of association rule ar; in Table 4.13 is 28.6 percent; of the seven
critique patterns, exactly two include the antecedent and consequent part of
association rule ar;. Confidence (CONF) denotes the ratio between critique
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Table 4.13. Example association rules (AR) and the compound
critiques (CC) derived from C P in Table 4.12.

association rules (AR) compound critiques (CC) SUPP CONF
ary >mpix = >zoom CC1I >mpix(9.1)» > zoom(9x) 28.6 100.0
aryl >zoom = <price CC2I >2z00m(9x), <price(278) 429 100.0
a3 =movies = <price CC31 = smovie(yes)» <price(278) 85.7 100.0

patterns containing all the elements of the antecedent and consequent of the
association rule and those containing only the antecedent part. For all the
association rules in Table 4.13 the confidence level is 100.0 percent — that is,
if the antecedent part of the association rule is confirmed by the pattern, the
consequent part is confirmed as well. In the algorithm DYNAMICCRITIQUING,
compound critiques are determined on the basis of the procedure APRIORI
that represents a basic implementation of the APRIORI algorithm (Agrawal and
Srikant 1994).

Ranking of compound critiques. The number of compound critiques can
become very large, which makes it important to filter out the most relevant
critiques for the user in each critiquing cycle. Critiques with low support have
the advantage of significantly reducing the set of candidate items, but at the
same time they decrease the probability of identifying the target item. Critiques
with high support can significantly increase the probability of finding the target
item. However, these critiques eliminate a low number of candidate cases, which
leads to a larger number of critiquing cycles in recommendation sessions. Many
existing recommendation approaches rank compound critiques according to
the support values of association rules, because the lower the support of the
corresponding association rules, the more candidate items can be eliminated. In
our working example, such a ranking of compound critiques {cc1, ccz, cc3} is
ccy, ¢ca, and cc3. Alternative approaches to the ranking of compound critiques
are discussed, for example, by Reilly et al. (2004), where low support, high
support, and random critique selection have been compared. This study reports
a lower number of interaction cycles in the case that compound critiques are
sorted ascending based on their support value. The issue of critique selection is
in need of additional empirical studies focusing on the optimal balance between
a low number of interaction cycles and the number of excluded candidate items.
In the algorithm DYNAMICCRITIQUING, compound critiques are selected on the
basis of the procedure SELECTCRITIQUES.
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Item reviewing. At this stage of a recommendation cycle all the relevant
information for deciding about the next action is available for the user: the
recommended (entry) item and the corresponding set of compound critiques.
The user reviews the recommended item and either accepts the recommendation
or selects a critique (unit or compound), in which case a new critiquing cycle
is started. In the algorithm DYNAMICCRITIQUING, item reviews are conducted
by the user in USERREVIEW.

4.4.4 Advanced item recommendation

After a critique has been selected by the user, the next item must be proposed
(recommended item for the next critiquing cycle). An approach to doing this —
besides the application of simple similarity measures (see Section 4.2) — is
described by Reilly et al. (2007b), where a compatibility score is introduced
that represents the percentage of compound critiques cc; € CCy that already
have been selected by the user and are consistent with the candidate item
ci. This compatibility-based approach to item selection is implemented in
Formula 4.7.

; € CCy : sati iy Cl
compatibility(ci, CCy) = [{ce v |CSZ‘ lS|ﬁes(cc ci)}| 4.7
U

CCy represents a set of (compound) critiques already selected by the user;
satisfies(cc;, ci) = 1 indicates that critique cc; is consistent with candidate item
ci and satisfies(cc;, ci) = 0 indicates that critique cc; is inconsistent with ci.
On the basis of this compatibility measure, Reilly et al. (2007b) introduce a
new quality measure for a certain candidate item ci (see Formula 4.8). This
formula assigns the highest values to candidate items ci that are as compatible
as possible with the already selected compound critiques and also as similar as
possible to the currently recommended item ri.

quality(ci, ri, CCy) = compatibility(ci, CCy) * similarity(ci, ri)  (4.8)

Table 4.14 exemplifies the application of Formula 4.8. Let us assume that
CCy = {cc2: >z00m(ox), <price278)} 18 the set of critiques that have been se-
lected by the user in USERREVIEW — in other words, only one critique has
been selected up to now. Furthermore, we assume that ri = eig. Then the re-
sulting set of new candidate items CI = {cis, cia, ci7}. In this case, item ciy
has by far the highest quality value and thus would be the item r returned by
ITEMRECOMMEND — qualily(ci4, eig, CC2 > z00m(9x)s <price(278)= 061) This item
selection approach helps take into account already selected critiques — that is,
preferences already specified are not ignored in future critiquing cycles. Further
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Table 4.14. Dynamic critiquing: quality of candidate items CI = {cis, ciy,
ciz} withregard to ri = eig and CCy = {cCy 1> z00m(9x), <price(278)}-

candidate item ci compatibility(ci, CCy) similarity(ci, ri) quality
ci3 1.0 0.40 0.40
an 1.0 0.61 0.61
ciy 1.0 0.41 0.41

related item recommendation approaches are discussed by Reilly et al. (2004),
who focus especially on the issue of consistency in histories of already selected
critiques. For example, if the user has initially specified the upper bound for the
price with <,,ic.(150) and later specifies > ,,ice300), One of those critiques must
be removed from the critique history to still have available candidate items for
the next critiquing cycle.

4.4.5 Critique diversity

Compound critiques are a powerful mechanism for effective item search in large
assortments — especially for users who are nonexperts in the corresponding
product domain. All the aforementioned critiquing approaches perform well as
long as there are no “hot spots,” in which many similar items are concentrated
in one area of the item space. In such a situation a navigation to other areas of
the item space can be very slow. Figure 4.6 depicts such a situation, in which
a compound critique on price and mpix leads to recommended items that are
quite similar to the current one.

An approach to avoid such situations is presented by McCarthy et al. (2005),
who introduce a quality function (see Formula 4.9) that prefers compound
critiques (cc) with low support values (many items can be eliminated) that
are at the same time diversified from critiques CCc¢,, already selected for
presentation in the current critiquing cycle.

quality(cc, CCcyy) = support(cc) x overlap(cc, CCcypy) 4.9

The support for a compound critique cc corresponds to the support of the
corresponding association rule — for example, support(ars) = support(ccs) =
85.7 (see Table 4.13). The overlap between the currently investigated compound
critique cc and CC¢y,, can be calculated on the basis of Formula 4.10. This
formula determines the overlap between items supported by cc and items
supported by critiques of CCc,, — that is, items(CCc,,) denotes the items
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Figure 4.6. Critique-based navigation: slow navigation in dense item spaces.

accepted by the critiques in CCcyyy.

lap(c. CP) litems({cc}) N items(C Ccypr)| 4.10)
overlap(c, = .
P litems({cc}) U items(C C cypr)

The lower the value of the function quality (preferred are low support and
low overlap to already presented critiques), the higher the probability for a
certain critique to be presented in the next critiquing cycle. Table 4.15 depicts
the result of applying Formula 4.9 to CCcur = {CC2t >0om9x), <price278) }
and two candidate association rules {ar,, ars} (see Table 4.13). Conforming to
this formula, the quality of compound critique cc; is higher than the quality
of cc3.

Table 4.15. Dynamic critiquing: quality of compound critiques
CC = {ccy, cc3} derived from association rules AR = {ary, ars}
assuming that CCcyrr = {CCZ-' > z00m(9%)> <price(278)}-

compound critiques (CC) support(cc) overlap(cc, CP) quality

CCy: >mpix(9.1)’ >2z00m(9x) 28.6 66.7 0.19
CCj3: =movies(yes), <price(278) 85.7 50.0 0.43
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4.5 Example applications

In the final part of this chapter we take a more detailed look at two commer-
cial recommender applications: a constraint-based recommender application
developed for a Hungarian financial service provider and a case-based recom-
mendation environment developed for recommending restaurants located in
Chicago.

4.5.1 The VITA constraint-based recommender

We now move from our working example (digital camera recommender) to the
domain of financial services. Concretely, we take a detailed look at the VITA
financial services recommender application, which was built for the Funda-
menta loan association in Hungary (Felfernig et al. 2007b). VITA supports
sales representatives in sales dialogs with customers. It has been developed on
the basis of the CWAdvisor recommender environment presented by Felfernig
et al. (2006)

Scenario. Sales representatives in the financial services domain are challenged
by the increased complexity of service solutions. In many cases, representatives
do not know which services should be recommended in which contexts, and how
those services should be explained. In this context, the major goal of financial
service providers is to improve the overall productivity of sales representatives
(e.g., in terms of the number of sales dialogs within a certain time period
or number of products sold within a certain time period) and to increase the
advisory quality in sales dialogs. Achieving these goals is strongly correlated
to both an increase in the overall productivity and a customer’s interest in
long-term business connections with the financial service provider.

Software developers must deal with highly complex and frequently changing
recommendation knowledge bases. Knowledge-based recommender technolo-
gies can improve this situation because they allow effective knowledge base
development and maintenance processes.

The Fundamenta loan association in Hungary decided to establish
knowledge-based recommender technologies to improve the performance of
sales representatives and to reduce the overall costs of developing and main-
taining related software components. In line with this decision, Fundamenta
defined the following major goals:

* Improved sales performance: within the same time period, sales representa-
tives should be able to increase the number of products sold.
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Figure 4.7. Architecture of the VITA sales support environment (Felfernig
et al. 2007).

Effective software development and maintenance: the new technologies
should ease the development of sales knowledge bases.

Application description. The resulting VITA sales support environment
(Figure 4.7) supports two basic (and similar) advisory scenarios. On one hand,
VITA is a web server application used by Fundamenta sales representatives and
external sales agents for the preparation and conducting of sales dialogs. On the
other hand, the same functionality is provided for sales representatives using
their own laptops. In this case, new versions of sales dialogs and knowledge
bases are automatically installed when the sales representative is connected
with the Fundamenta intranet.

For both scenarios, a knowledge acquisition environment supports the au-
tomated testing and debugging of knowledge bases. Such a knowledge base
consists of the following elements (see Section 4.3):

* Customer properties: each customer must articulate his or her requirements,
which are the elementary precondition for reasonable recommendations.
Examples for customer properties in the financial services domain are age,
intended run time of the service, existing loans in the portfolio, and the

like.
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Figure 4.8. Example of advisory process definition (loan advisory) (Felfernig
et al. 2007b).

* Product properties and instances: each product is described in terms of
a set of predefined properties such as recommended run time, predicted
performance, expected risk, and so on.

* Constraints: restrictions that define which products should be recommended
in which context. A simple example of such a constraint is customers with a
low preparedness to take risks should receive recommendations that do not
include high-risk products.

* Advisory process definition: explicit definitions of sales dialogs are rep-
resented in the form of state charts (Felfernig and Shchekotykhin 2006)
that basically define the context in which questions should be posed to
the user (an example of a simple advisory process definition is depicted in
Figure 4.8).
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In Fundamenta applications, recommendation calculations are based on the
execution of conjunctive queries (for an example, see Section 4.3). Conjunctive
queries are generated directly from requirements elicited within the scope of
a recommendation session. The recommendation process follows the advisory
process definition.

A loan recommendation process is structured in different phases (require-
ments elicitation, creditworthiness check, product advisory/selection, and de-
tailed calculation/vesult presentation). In the first phase, basic information
regarding the customer (personal data) and the major purpose of and require-
ments regarding the loan (e.g., loan amount, run time of loan) are elicited. The
next task in the recommendation process is to check the customer’s creditwor-
thiness on the basis of detailed information regarding the customer’s current
financial situation and available financial securities. At this time, the applica-
tion checks whether a solution can be found for the current requirements. If
no such solution is available (e.g., too high an amount of requested money for
the available financial securities), the application tries to determine alternatives
that restore the consistency between the requirements and the available set of
products. After the successful completion of the phase creditworthiness check,
the recommender application proposes different available loan alternatives (re-
demption alternatives are also taken into account). After selecting one of those
alternatives, the recommendation process continues with a detailed calculation
of specific product properties, such as the monthly redemption rates of the cur-
rently selected alternative. A screen shot of the VITA environment is depicted
in Figure 4.9.

Knowledge acquisition. In many commercial recommender projects, gener-
alists who possess deep domain knowledge as well as technical knowledge
about recommender technologies are lacking. On one hand, knowledge engi-
neers know how to create recommender applications; on the other hand, domain
experts know the details of the product domain but do not have detailed techni-
cal knowledge of recommenders. This results in a situation in which technical
experts have the responsibility for application development and domain ex-
perts are solely responsible for providing the relevant product, marketing, and
sales knowledge. This type of process is error-prone and creates unsatisfactory
results for all project members.

Consequently, the overall goal is to further improve knowledge-based rec-
ommender technologies by providing tools that allow a shift of knowledge
base development competencies from knowledge engineers to domain experts.
The knowledge acquisition environment (CWAdvisor [Felfernig et al. (2006)])
that is used in the context of VITA supports the development of recommender
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Figure 4.9. Screen shot of VITA sales support environment (Felfernig et al.
2007b).

knowledge bases and recommender process definitions on a graphic level. A
glimpse of the basic functionalities of this acquisition is given in Figure 4.10.
Different recommender applications can be maintained in parallel — for exam-
ple, investment and financing recommenders in the financial services domain.
Each of those recommenders is defined by a number of product properties, cus-
tomer properties, and constraints that are responsible for detecting inconsistent
customer requirements and for calculating recommendations.

A simple example of the definition of constraints in the financial services
domain is given in Figure 4.1 1. This constraint indicates that high rates of return
require a willingness to take risks. The CWAdvisor environment (Felfernig
et al. 2006) supports rapid prototyping processes by automatically translating
recommender knowledge bases and process definitions into a corresponding
executable application. Thus customers and engineers are able to immediately
detect the consequences of changes introduced into the knowledge base and
the corresponding process definition.

Ninety percent of the changes in the VITA knowledge base are associated
with the underlying product assortment because of new products and changing
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Figure 4.10. Knowledge acquisition environment (Felfernig et al. 2006).
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interest rates (Felfernig et al. 2007b). Change requests are collected centrally
and integrated into the VITA recommender knowledge base once a month.
The remaining 10 percent of the changes are related to the graphical user
interface and to the explanation and visualization of products. These changes
are taken into account in new versions of the recommender application, which
are published quarterly.

4.5.2 The Entree case-based recommender

A well-known example of a critiquing-based commercial recommender appli-
cation is Entree, a system developed for the recommendation of restaurants in
Chicago (Burke 2000, Burke et al. 1997). The initial goal was to guide partici-
pants in the 1996 Democratic National Convention in Chicago, but its success
prolonged its usage for several years.

Scenario. Restaurant recommendation is a domain with a potentially large set
of items that are described by a predefined set of properties. The domain is
complex because users are often unable to fully define their requirements. This
provides a clear justification for the application of recommendation technolo-
gies (Burke et al. 1997). Users interact with Entree via a web-based interface
with the goal of identifying a restaurant that fits their wishes and needs; as op-
posed to the financial services scenario discussed in Section 4.5.1, no experts
are available in this context who support users in the item retrieval process.
FindMe technologies introduced by Burke et al. (1997) were the major techno-
logical basis for the Entree recommender. These technologies implement the
idea of critique-based recommendation that allows an intuitive navigation in
complex item spaces, especially for users who are not experts in the application
domain.

Application description. A screenshot of an Entree-type system is shown in
Figure 4.12.

There are two entry points to the system: on one hand, the recommender can
use a specific reference restaurant as a starting point (preselected on the basis of
textual input and a text-based retrieval (Burke et al. 1997)); on the other hand,
the user is able to specify the requirements in terms of typical restaurant proper-
ties such as price, cuisine type, or noise level or in terms of high-level properties
such as restaurant with a nice atmosphere (Burke et al. 1997). High-level prop-
erties (e.g., nice atmosphere) are translated to low-level item properties — for
example, restaurant with wine cellar and quiet location. High-level properties
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Figure 4.12. Example critiquing-based restaurant recommender.

can be interpreted as a specific type of compound critique, as they refer to a col-
lection of basic properties. The Entree system strictly follows a static critiquing
approach, in which a predefined set of critiques is available in each critique
cycle. In each cycle, Entree retrieves a set of candidate items from the item
database that fulfill the criteria defined by the user (Burke 2002a). Those items
are then sorted according to their similarity to the currently recommended item,
and the most similar items are returned. Entree does not maintain profiles of
users; consequently, a recommendation is determined solely on the basis of the
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Figure 4.13. Example of critiquing-based restaurant recommender: result dis-
play after one critiquing cycle.

currently displayed item and the critique specified by the user. A simple sce-
nario of interacting with Entree-type recommender applications follows (see
Figure 4.13).

The user starts the interaction with searching for a known restaurant, for
example, the Biergasthof in Vienna. As shown in Figure 4.12, the recommender
manages to identify a similar restaurant named Brauhof that is located in the
city of Graz. The user, in principle, likes the recommended restaurant but
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would prefer a less expensive one and triggers the Less 88 critique. The result
of this query is the Brau Stiiberl restaurant in city of Graz, which has similar
characteristics to Brauhof but is less expensive and is now acceptable for the
user.

Knowledge acquisition. The quality of a recommender application depends
on the quality of the underlying knowledge base. When implementing a case-
based recommender application, different types of knowledge must be taken
into account. A detailed description of the cases in terms of a high number
of item attributes requires investing more time into the development of the
underlying similarity measures (Burke 2002a). In Entree, for each item a cor-
responding local similarity measure is defined that explains item similarity in
the context of one specific attribute. For example, two restaurants may be very
similar in the dimension cuisine (e.g., both are Italian restaurants) but may be
completely different in the dimension price. The global similarity metric is
then the result of combining the different local similarity metrics. An important
aspect in this context is that similarity metrics must reflect a user’s understand-
ing of the item space, because otherwise the application will not be successful
(Burke 2002a). Another important aspect to be taken into account is the quality
of the underlying item database. It must be correct, complete, and up to date to
be able to generate recommendations of high quality. In the restaurant domain,
item knowledge changes frequently, and the information in many cases has to
be kept up to date by humans, which can be costly and error-prone.

4.6 Bibliographical notes

Applications of knowledge-based recommendation technologies have been de-
veloped by a number of groups. For example, Ricci and Nguyen (2007) demon-
strate the application of critique-based recommender technologies in mobile
environments, and Felfernig and Burke (2008) and Felfernig et al. (2006-07)
present successfully deployed applications in the domains of financial services
and consumer electronics. Burke (2000) and Burke et al. (1997) provide a
detailed overview of knowledge-based recommendation approaches in appli-
cation domains such as restaurants, cars, movies, and consumer electronics.
Further well-known scientific contributions to the field of critiquing-based rec-
ommender applications can be found in Lorenzi and Ricci (2005), McGinty
and Smyth (2003), Salamo et al. (2005), Reilly et al. (2007a), and Pu et al.
(2008). Felfernig and Burke (2008) introduce a categorization of principal rec-
ommendation approaches and provide a detailed overview of constraint-based
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recommendation technologies and their applications. Zanker et al. (2010) for-
malize different variants of constraint-based recommendation problems and
empirically compare the performance of the solving mechanisms. Jiang et al.
(2005) introduce an approach to multimedia-enhanced recommendation of dig-
ital cameras, in which changes in customer requirements not only result in a
changed set of recommendations, but those changes are also animated. For
example, a change in the personal goal from portrait pictures to sports pho-
tography would result in a lens exchange from a standard lens to a fast lens
designed especially for the high-speed movements typical in sports scenes.
Thompson et al. (2004) present a knowledge-based recommender based on a
combination of knowledge-based approaches with a natural language interface
that helps reduce the overall interaction effort.



